Home » LoRaWAN: Long range wireless protocol
Business Development
A quick introduction to LoRaWAN
LoRa (Long RaLoRa (Long Range) is an expanded spectrum modulation technique derived from chirp spread spectrum (CSS) technology and it is the first low-cost implementation of the chirp spread spectrum for commercial use. It was developed by Cycleo of Grenoble, France, and acquired by Semtech in 2012, a founding member of the LoRa Alliance.
I dispositivi LoRa di Semtech e la tecnologia wireless a radiofrequenza Long Range (tecnologia LoRa) sono un chipset wireless a lungo raggio e bassa potenza che viene utilizzato nell’implementazione di molte reti di dispositivi Internet of Things (IoT) in tutto il mondo. LoRa è un protocollo di comunicazione che compete con altre reti wireless a bassa potenza (LPWAN) come IoT a banda stretta (NB IoT) o LTE Cat M1 e SigFox.
LoRa uses free sub-gigahertz radio frequency bands such as 433 MHz, 868 MHz (Europe) and 915 MHz (North America) allowing long-haul transmissions (over 10 km in rural areas, 3-5 km in heavily urbanised areas) with low energy consumption.
Referring to the ISO / OSI layers, the technology is presented in two parts: LoRa, the physical layer and LoRaWAN (Long Range Wide Area Network), the upper layers. Since LoRa defines the lower physical layer, the upper network layers were missing. LoRaWAN is one of the numerous protocols developed to define the upper layers of the network; is a cloud-based MAC (Media Access Control) layer protocol but mainly serves as a network layer protocol for managing communications between LPWAN (Low Power Wide Area Network) gateways and end-node devices as a routing protocol, managed by LoRa Alliance. Version 1.0 of the LoRaWAN specification was released in 2015. Version 1.1 in 2017. LoRaWAN defines the communication protocol and system architecture for the network, while the LoRa physical layer allows for long-range communication links.
LoRaWAN is also responsible for managing communication frequencies, data rates and power for all devices: the devices in the network are asynchronous and transmit when they have data available for sending; the data transmitted by a device (called an end-point) is received by multiple gateways, which forward the data packets to a centralized network server (or Network Server)
All LoraWAN devices must implement at least the functionality of Class A and optionally those of Class B and Class C:
● Class A devices are battery powered, when an uplink is sent to the server the device opens two small windows for any commands, if the server is unable to send a downlink in the two small windows, it will have to wait until the next uplink.
● Class B devices are battery powered, in addition to the two Class A windows, Class B has an extra window for downlinks, which opens at scheduled times. This window is synchronized with the server through a gateway Beacon and is used by the server to know when the device is listening.
● Class C devices are electrically powered, the reception windows for the downlinks are almost always open, the only time they are closed is during transmission.
Il protocollo e l’architettura della rete sono i fattori di maggiore influenza sull’autonomia delle batterie di un nodo, la capacità della rete, la qualità del servizio, la sicurezza e le differente applicazioni servite dalla rete. Molte reti esistenti utilizzano un’architettura di rete ”mesh”, dove i singoli nodi finali inoltrano le informazioni di altri nodi per aumentare il raggio di comunicazione e le dimensioni delle celle della rete. Mentre questo aumenta il raggio di azione, aggiunge anche complessità alla rete, ne riduce la capacità e riduce l’autonomia di vita visto che i nodi ricevono e trasmettono informazioni da altri nodi che sono probabile irrilevanti.
In un network LoRaWAN, invece, i nodi di rete non sono associati con un gateway specifico: i dati trasmessi da un nodo sono tipicamente ricevuti da più gateway che a loro volta inoltrano il pacchetto ricevuto dal nodo finale, al server di rete cloud tramite alcuni ”backhaul” (cellulare, Ethernet, satellite o Wi-Fi). Questa apparente complessità è coordinata dal server di rete, che gestisce la rete e filtra i pacchetti ridondanti ricevuti, effettua controlli di sicurezza, pianifica acknowledgments attraverso il gateway ottimale, amministra la velocità di trasferimento dei dati, ecc. In questo modo, che un nodo sia mobile o in movimento non è necessario il passaggio di consegne from gateway to gateway, caratteristica critica per consentire, ad esempio, la tracciabilità / monitoraggio degli asset e delle attività, principale obiettivo nelle applicazioni pratiche di servizi IoT.
Come in tutte le reti LPWAN, la sicurezza ricopre un ruolo molto importante. LoraWAN utilizza due livelli di sicurezza: uno a livello rete e uno a livello applicazione: la sicurezza a livello rete assicura autenticità dei nodi nella rete, mentre quello applicativo assicura che gli operatori di rete non hanno accesso ai dati dell’applicazione utente.
Lo scambio delle chiavi di sicurezza avviene tramite cifratura AES, utilizzando un identificatore IEEE EUI64, i device LoRaWANTM hanno due modi per eseguire un join con il network. Il primo si chiama OTAA, Over-the-Air-Activation: questa modalità prevede che il device e il network si scambino una chiave a 128 bit chiamata AppKey. Quando il device spedisce la richiesta per effettuare il join, l’AppKey viene utilizzata per creare un Message Integrity Code (MIC), dopodiché il server controlla il MIC utilizzando l’AppKey. Se il controllo viene passato, il server crea due nuove chiavi a 128 bit, l’ App Session Key (AppSkey) e la Network Session Key (NwkSkey). Queste chiavi sono spedite indietro al device, criptate utilizzando l’AppKey come chiave di criptazione. Quando le chiavi vengono ricevute, il device le decripta e le installa.
La seconda modalità per effettuare un join si chiama ABP, Activation by Personalization. Questa modalità prevede che le chiavi di sessioni vengano inserite manualmente dall’utente, tuttavia questo potrebbe causare problemi di sicurezza.
The LoRaWAN protocol offers the connectivity suitable for IoT solutions that depend on low-power long-range communications but, at the same time, require the certainty that the network will be supported for the entire life of the assets and related products; this protocol provides interoperability between intelligent objects, without the need for complex local installations and provides the freedom for the user, developers and companies to develop innovative IoT applications. In recent years these technologies have been spreading into new solutions and services that aim to increase the quality of life of people, the improvement of production processes and the use of goods and services, in other words we are talking about smart cities and smart metering. So let's deepen these two concepts:
BOX-IO è la nostra piattaforma di sviluppo IoT White Label e multiprotocollo che supporta pienamente la tecnologia LoRaWAN, questo protocollo di comunicazione wireless ci permette di controllare e monitorare aree di ampie dimensioni. Il sistema ha la caratteristica di non necessitare di cablaggi e di manutenzioni invasive, permettendo di ridurre drasticamente i costi di installazione e di infrastruttura.
Through LoRaWAN, BOX-IO is able to send data and control scenarios over more or less large areas, while with our Lizard board we can quickly connect and integrate any traditional RS485 device using the LoRaWAN protocol.
Scopri i vantaggi del nostro ecosistema IoT BOX-IO al link www.box-io.com!
Read more
Let's talk about your technology project together. EDALAB s.r.l. | P.IVA 03706250234| Tel. 045 257 0357
Azienda con sistema qualità certificato da Dasa Ragister– UNI EN ISO 9001:2015
Terms and Conditions